Зависимость сопротивления от физических условий.
Сопротивление проводников (или обратная величина — их проводимость) не есть величина постоянная, а может меняться в зависимости от физических условий, в которых находятся эти проводники, и прежде всего (для большинства проводников) — от температуры.
Сопротивление некоторых тел изменяется от воздействия магнитного поля, от механических воздействий, от действия световых лучей и т. п.
Сопротивление металлов увеличивается с увеличением температуры; сопротивление угля, металлических земель и электролитов с повышением температуры уменьшается.
С достаточным приближением в каком-нибудь интервале температур сопротивление металлического проводника может быть выражено через
а в первом приближении в пределах небольших изменений температур от 0 до 100 градусов Цельсия через
Таблица проводимости материалов
Температурный коэффициент удельного сопротивления, а для всех чистых металлов имеет величину, приблизительно равную тепловому коэффициенту расширения идеальных газов:
Это обстоятельство можно было бы формулировать и таким образом, что сопротивление проводника пропорционально его абсолютной температуре (измеряемой в градусах Кельвина). Действительно,
Особый интерес представляют сплавы. Если металлы, входящие в сплав, не растворяются друг в друге, т. е. если сплавы состоят из обособленных кристаллов этих металлов, то проводимость и коэффициент проводимости могут быть подсчитаны по правилу смешения (например, кадмий — цинк). Если же составные металлы растворяются друг в друге в любом соотношении, то сплавы имеют более высокие удельные сопротивления, чем их компоненты и очень низкий температурный коэффициент. Этим свойством пользуются при изготовлении материалов с высоким удельным сопротивлением, например, никелина, нихрома, манганина, константана и т. д. (см. таблицу проводимости материалов) для реостатов, эталонов сопротивления и т. п.
Пониженная проводимость получается также от прибавления к меди фосфора или силиция, что делается для достижения большей механической прочности меди, например, при изготовлении телеграфных и телефонных проводов для воздушных линий.
При переходе из одного агрегатного состояния в другое, например, при плавлении, удельное сопротивление почти всех металлов и их температурный коэффициент увеличиваются (для сурьмы и висмута имеет место обратное явление).
В металлах, подверженных внешнему давлению, сопротивление с повышением давления за весьма малыми исключениями уменьшается. То же, но в значительно большей степени, наблюдается для порошкообразных тел, например, для металлических или угольных порошков. Последним свойством пользуются в так называемых угольных микрофонах, где мембрана, колеблясь под действием звуков, давит на порошок и изменяет его сопротивление.
В отношении влияния магнитного поля на электрическое сопротивление металлов следует указать, что для так называемых ферромагнитных тел (железа, никеля, кобальта) наблюдается увеличение сопротивления, когда направление поля совпадает с направлением тока, и уменьшение сопротивления, когда магнитное поле перпендикулярно к направлению тока. Для диамагнитных тел, наиболее характерным из которых является висмут, при помещении их в магнитное поле имеет место весьма значительное повышение сопротивления (при увеличении напряженности поля) от 0 до 12500 А/см сопротивление висмута увеличивается на 75%. Этим свойством пользуются для измерения сильных магнитных полей
Проводимость в некоторых случаях зависит также от световых лучей, падающих на проводник. В этом отношении особенно выделяется так называемый серый селен, который может быть получен или в кристаллической модификации при медленном остывании (от 200 градусов Цельсия) или в металлической модификации при быстром охлаждении. Первая модификация наиболее светочувствительна. Чем сильнее освещать селен, тем больше падает его сопротивление. На этом влиянии световых лучей на селен, которое более всего проявляет в красной и жёлтой частях спектра, построены так называемые световые реле, которые, однако, обладают тем недостатком, что изменение проводимости наступает с некоторым запозданием и затем при длительном действии света, селен перестает реагировать на изменение силы света.